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Summary

Although gel permeation chromatography is firmly established as a tech-
nique for investigating heterogeneity in synthetic polymers, the charac-
ter of the chromatographic process—whether it is dominated by diffusion.
by flow effects, or by an equilibrium partitioning of polymer between
the mobile phase and the micropores in the column packing—is still dis-
puted. General chromatographic theory supports the idea that under
ordinary experimental conditions the equilibrium distribution of a solute
determines the position of its elution peak in the chromatogram. Sta-
tistical mechanical calculations of distribution coeflicients for linear and
branched polymer chains and idealized pores of simple geometry lead
to predictions in good accord with some experimental findings.

GEL PERMEATION AND CHROMATOGRAPHIC THEORY

In the decade or less since gel permeation chromatography (GPC)
was first proposed as a general means for separation of synthetic
polymers according to molecular weight, suitable instrumentation has
become widely available and the method has attained status as the
most popular one for analytical polymer fractionation. Although the
practical success, first with compact biological macromolecules and
more recently with typical flexible chain polymers, that has amply
demonstrated that separation is effected according to molecular size
has also spurred inquiry into the physical basis of the separation, the

* Presented at the ACS Symposium on Gel Permeation Chromatography spon-
sored by the Division of Petroleum Chemistry at the 159th National Meeting of
the American Chemical Society, Houston, Texas, February, 1970.
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mechanism responsible remains a matter of some dispute. Theoretical
treatments have been variously concerned with diffusion processes
(1, 2), hydrodynamic effects (2-5), and thermodynamic equilibrium
(6-11). Perhaps the only point of general agreement is that the
mechanisms proposed are not mutually exclusive: the question is
not what effect occurs but rather which one is dominant (1, 2, 4, 12).

It is attractive to suppose that a process at or (more precisely) near
thermodynamic equilibrium is operative simply because a rigorous
theoretical treatment will be inherently simpler than for a mechanism
limited by a transport process. Furthermore, even if such optimism
should be quite unjustified, it can be argued that the equilibrium situa-
tion retains significance as the asymptotic limit to which real behavior
must tend when a chromatographic column is operated at extremely
small flow rate.

To gain some idea of the applicability of an equilibrium model for
GPC, we can turn to the general theory of chromatography. Of the
several ways of treating chromatographic processes, the stochastic
theory proposed by Giddings and Eyring (13), elaborated upon by
Hddings (14) and by McQuarrie (15), and applied to GPC by Car-
michael (16) is particularly appropriate. The original theoretical model
is designed to describe adsorption chromatography. Hence, the deserip-
tion proceeds in terms of a column filled with a granular packing
material bearing identical surface sites (constituting a stationary
phase) capable of adsorbing a solute reversibly from solution. The
interstices between granules, initially filled with solvent, constitute
the mobile phase. At a certain moment, a narrow band of solution is
introduced at the top of the column. This is followed by more solvent
as liquid is withdrawn from the bottom of the column at a steady rate
and the solution zone passes down through the column, exchanging
solute with the stationary phase. Three assumptions are made: (a)
that a molecule of a particular solute species in the liquid phase has
a certain fixed probability k, per unit time of being adsorbed on a
surface site, (b) that a molecule on the surface has a fixed probability
k. per unit time of escaping into the mobile phase, and (c) that there
is no net diffusion of solute molecules in the direction of the column
axis while they are in the mobile phase. The first assumption implies
that the adsorption isotherm is linear—the solution is so dilute that
solute molecules do not interact and there is no multiple adsorption on
sites. It further implies that the absorption is not diffusion controlled.
This requirement is obviously not physically realizable since the prob-
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ability for adsorption of a given molecule can hardly be independent
of its distance from a reactive site, but a time-averaged k, will be the
same for each solute molecule if the residence time in the column is
long enough to permit the molecule to undergo a large number of
adsorptions and desorption steps. Assumptions (a) and (b) require
that absorption sites do not interact—that occupation of a site does
not affect k, and k. at any other site. Assumption (¢) means that
every solute molecule spends the same time ¢, in the mobile phase
as it passes through the chromatographic column. The theory thus
neglects various flow effects, as well as longitudinal diffusion, that in real
columns contribute to the spreading of chromatographic peaks. The
peak shape predicted by the theory is accounted for solely by the
probability distribution of the total time £, that a solute molecule
spends absorbed as it pursues its course down the column, alternately
in the mobile phase and in the stationary (adsorbed) phase. The object
of the stochastic theory is to calculate this distribution as a function
of parameters ki, k., and &,. If the rate of withdrawal of fluid from
the column is held constant, ¢, + ¢ is proportional to the volume
eluted when molecules experiencing a given t, emerge, and the prob-
ability of ¢; plotted against ¢, for a solute species has the shape of the
elution curve—i.e., concentration versus elution volume.

It will be recognized that the foregoing description of a model for
adsorption chromatography requires only minimal verbal changes to
apply cqually to GPC. Now we have a column packing that con-
tains, in place of adsorption sites, microscopie voids, for our purposes
of the same order of size as macromolecules and (for simplicity) as-
sumed to be of identical size and shape. The stationary phase is the
volume V; of the part of tue column inside micropores and accessible
to solvent. All we then have to do is replace the word ‘“adsorption”
by the phrase “entrapment in micropores” and recognize that in GPC,
unlike adsorption chromatography, the solvent—consisting of small
molecules and, therefore, most easily trapped in voids—is retarded in
the column relative to macromolecular solutes.*

The mathematical problem is a standard one in probability theory.
Interestingly, the result of the caleculation is an elution curve that
departs somewhat from a Gaussian-—it has a positive skew. However,

* Since the name “gel permeation” has been canonized by general acceptance,
we use 1t freelv here to designate a kind of chromatography, without meaning to
imply that the column packing must be a gel in any conventional sense of
the word.
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our concern here is not with the details of the theoretical curve shape
but primarily with the position of the maximum in the peak along
the time (or volume) axis. The result we require is (13)

V.= Vo+ KV.(1 — 3/2N) 1)

where V. is the volume eluted when the peak maximum appears (hence-
forth called simply the elution volume) and V, is the volume of the
mobile phase. Then, V, 4+ V; is the total volume of the column except
for the volume of the solid matter in the packing and the volume of
“blind” pores that cannot be permeated by solvent. Certain constants
are gathered in K,

K = k1V0/k2Vi (2)
and

N = k'lto (3)

is the mean number of entrapments suffered by a solute molecule in
its passage through the column. Equation (1) is an asymptotic relation
for N. Recalling that the mean residence time of a molecule in a GPC
column is of the order of a half hour or longer in a conventional experi-
ment, we surmise that this condition is adequately fulfilled. Equation
(1) also implies that at the start of the experiment—the moment when
withdrawal of liquid from the column begins—the solute is all in
the mobile phase. However, the only difference for the alternative
extreme of all solute adsorbed at the beginning is the unimportant
replacement of 35 in the second term by %% (13).

The obvious, but crucial, deduction from Eq. (1) is that if N is
sufficiently large, we can write

Ve=Vo+ KV, 4)

without appreeiable error. Consequently, under realistic experimental
conditions, the elution volume V. from a given column is expected to
be insensitive to the flow rate, which of course determines the time £,
hence N.

As we expect intuitively, the dispersion of an elution peak does not
share this insensitivity to flow rate. Another result of the statistical
theory is that the standard deviation of ¢, is proportional to N% (i.e.,
to t.%) for large N. However, the standard deviation of the ratio
t./to is asymptotically proportional to 1/N%. These rclations conform
to the essential requirement in a chromatographic separation that in-
creasing the column length at constant flow rate improves resolution
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of multiple peaks, even though each peak becomes broader with
Increasing .

Equation (4) can be regarded as the basic relation for GPC. The
constant K as defined in the theory is the ratio of the two rate con-
stants for passage of solute to and out of the stationary phase; hence
it is the equilibrium constant, the distribution coefficient, for the
partitioning of solute between mobile and stationary phases. Just
as in the distribution of a solute between dilute macroscopic phases, K
is the ratio of solute concentrations in the two phases; and —RT In K
represents the free energy change for the process of transporting a
mole of solute in its standard state in one phase to its standard state in
the other. The possibility is thus afforded of applying the conventional
methods of statistical mechanies to simple models for entrapment
of solute in pores to deduce K and thus to predict elution volumes
from Eq. (4) if Vo and V; are known. In general V, and V; can be de-
termined experimentally: the former represents the elution volume
for solute molecules so large that they do not penetrate the pores ap-
preciably (K =0), and V; 4+ V, is the elution volume for small
molecules that penetrate the voids as easily as the solvent does (so
that K = 1—as would be expected for radioactively labeled solvent).

As the preceding discussion indicates, equilibrium theory may yield
important information about gel chromatography—information on the
relation of molecular conformation and pore geometry to the elution
volume. However, it cannot be expected to reveal anything about peak
spreading since the dynamics of molecular entrapment that determine
the individual rate constants k, and k. do not enter into the equilibrium
calculations.

CALCULATION OF THE SOLUTE DISTRIBUTION

We have already stipulated that the solution passing through the
chromatographic column must be so dilute that interactions between
solute molecules are negligible. Then, the equilibrium constant K can
be written formally as a ratio of configuration integrals for one
molecule:

_ f_ . .J‘e—U.{q)d{q_}
K = J' N fe—Uu((I‘d{q} ()

where U,{q} represents an energy associated with a set of spatial
coordinates {g} that defines a solute molecular conformation in the
stationary phase and U,{q} represents the energy as a function of the
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requisite coordinates in the mobile phase.* For a spherical molecule
appropriate coordinates would be the three needed to locate the center
of mass; for a rigid asymmetric molecule, the coordinates of the center
of mass plus the angles determining orientation; and for a flexible
polymer chain, coordinates of the center of mass, or a chain end, plus
coordinates of each segment relative to this reference point. The symbol
d{q} denotes a differential element of the configuration space of as
many dimensions as are needed to describe a molecular conformation.
The two multiple integrations are carried out over equal macroseopic
volumes in physical space, e.g., a unit volume of solution and the
same volume of space inside pores constituting the stationary phase
(10).

Evaluation of the integrals in Eq. (5) is in general impossible,
and further progress depends on placing drastic limitations on the
energies Us{q}. Here we let these energies have but two values, zero
{or any fixed finite value) and infinity. When U, is zero, the con-
formation is allowed; when U, is infinite, the conformation is for-
bidden. Thus we represent the walls of a pore as rigid boundaries
which a molecule cannot pass. Any conformation intersecting the
boundary has infinite energy and is thereby excluded. Adsorption of
solute, which would imply minimum energy for conformations con-
tiguous to the boundary surface, is also excluded. For nonrigid
molecules the assumption that all allowed conformations have the
same energy means that intramolecular interactions are ignored. For
flexible long-chain molecules, the case of particular interest, this
means that the polymer-solvent system is at its characteristic “theta
temperature,” at which the second virial coefficient in the osmotic
equation of state is zero (and at which phase separation occurs if
the polymer is of infinite molecular weight) (18). At the theta point,
the molecular conformation of a long-chain polymer can be described
by random flight statistics, a fact that enormously facilitates mathe-
matical analysis.

With the above limitations on permissible energies, the distribu-
tion coefficient K is expressed as a ratio of volumes in configuration
space; and thus RIn K is a standard entropy change per mole of
solute. For rigid spherical molecules, the ratio of configuration in-
tegrals reduces to a ratio of volumes in physical space. This straight-

* In more precise language, these energies are potentials of mean force (17)
between solute molecules. They include implicitly the effects of solute-solvent
and solvent—solvent interactions.
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forward volume-exclusion picture of GPC has long been used to
account for the elution behavior of compact biological macromolecules.
For example, a spherical solute molecule of radius r does not interact
with a wall when its center of mass is farther than a distance r
from the wall, and it can approach no closer than r. Consequently,
in a slab-shaped space between parallel (infinite) planes a distance
2a apart, the equilibrium constant is (¢ — 7)/a, the volume “seen”
by the sphere divided by the actual volume of a cavity. The same
sphere in a long cylindrical cavity of radius a and inside a hollow
sphere of radius a gives K equal, respectively, to the square and cube
of (a — 7)/a. Various geometrical situations for exclusion of rigid
molecules have been investigated (6-8, 10, 19). The calculations are
sometimes intricate but the principle remains the same; the cal-
culated K represents the fraction of the void volume effectively
available to solute.

The exclusion of a flexible polymer chain from part of the volume
inside micropores is perhaps less obvious. Because such a molecule is
allowed to assume any shape, however tortuous, no part of the
actual volume of a pore is excluded from occupancy by any part
of the polymer chain; but since configurations that intersect the
walls of a void are disallowed, the number of permitted configura-
tions per unit volume is still decreased by proximity to a wall. In
other words, although the geometry of the situation is more com-
plicated than for the rigid sphere model, it is still true that the
region of configuration space available to the solute is reduced by the
presence of an impenetrable boundary.

These ideas can be illustrated concretely by considering the least
specific model for a micropore: whatever the shape of the pore, we
let it be characterized simply by the ratio o of its surface to its
volume and assume that solute molecules, intersect with the sur-
face as if it were a plane of infinite extent. Therefore, a spherieal
solute of molecular radius r, rolling over the surface of any cavity,
will have its center of mass excluded from a fraction or of the
volume of the cavity, and then according to Eq. (5), the distribution
coefficient is given by

K=1-—or (6)

Representing o by 1/a, 2/a, and 3/a, for slab-shaped, cylindrieal, and
spherical cavities, respectively, we obtain expressions for K in agree-
ment with the exact results mentioned above for the limit »/a — 0.
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Turning to a linear polymer chain, we depict it by a trace of the
path of a particle undergoing a series of random displacements; thus
we seek an appropriate solution of the diffusion eguation

OP.(x,y2) _ b°

an T 6

where P.(z,y,2) dxdydz is the probability of finding the nth step of

the random walk within a differential volume element dzdydz located

at a point z,y,2. The step length is normally distributed and its rms

value is b. For the problem under discussion we suppose that the

random flight begins at a point (2/,0,0) within a semi-infinite region

x> 0 bounded by a plane at x = 0. Imposing the boundary condi-

tion that P, vanish at = 0, we can solve the differential equation
to obtain:

Po(zy,2l2’',0,0) = (6/7nb?) exp { —(3/2nb*)(y* + 2%)}
X lexp {—(3/2nb%)(z — 2)*} — exp {—(3/2nb*)(z + 2")2}] (8)

the probability that a random flight starting at (z’,0,0) arrives at
the point (z,y,2) after n steps without encountering the boundary (20).
Integration gives an error function,

P, = [[[Pa(z,y,2/2',0,0) dedydz = erf [(z'/2)(6/nb?)1/?] )

V2P, (2,y,2) )

where
erfu = (2/x11%) [) et dt (10)

for the probability that a random flight beginning at a distance z’
from the plane £ = 0 and proceeding for n steps does not touch the
boundary. Equivalently, P, can be described as the fraction of all
possible conformations of a random-flight polymer chain of n seg-
ments with one end at = 2’ in unbounded space that still remains
available when an impenetrable boundary is placed at z = 0. The
integral

z. = [)“’ (1 — P) da’ = 2(nb*/6m)12 (11)

represents an effective distance characterizing the depletion of pol-
ymer chains at equilibrium near the boundary. That is, in terms of
the mean solute concentration (preciscly, the concentration of ehain
ends), the ecavity is equivalent to a volume in an unbounded space
that is smaller than the real cavity by a layer of thickness x. adjacent
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to the wall. The distribution coefficient K = K, for the polymer species
is then simply obtained by putting x. in place of r in Eq. (6).

Just as in the case of rigid spheres, expressions for K, for flexible
chain molecules derived in this way are correct limiting forms for
molecules small compared to the dimensions of the cavity. Caleula-
tions not so restricted, of K, for random-flight chains in the slab,
cylinder, and sphere cavities have been described elsewhere (9). The
results are shown in Fig. 1 for comparison with the limiting behavior.
It can be seen that the straight line representing the approximate K,
for the slab crosses the curve for the exact relation at K = 0.25. There
are similar intersections at much larger K for the cylinder and sphere
relations, although this is not discernible on the scale of Fig. 1.

Since the mean-square radius of a random-flight linear chain of
n segments 1is

R? = nb2/6 (12)

the quantity, (nb%/6a?)'/%, where a is the radius of the cavity (half
the separation of the planes in the slab model), is a convenient meas-

1.0
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#1G. 1. Equilibrium constants for partitioning of linear random-flight

polymer chains between a macroscopic solution phase and cavities of mo-

lecular dimensions. The solid curves (from top to bottom) are for slab-

shaped, cylindrical, and spherical cavities. The abscissa is the ratio of

the rms molecular radius to the cavity radius (half its thickness for the

slab). The dashed lines are the corresponding limiting relations for the
upper permeation limit, KX =1,
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ure of the relative sizes of a polymer molecule and the cavity. For
each pore geometry characterized by a single dimensional parameter
a, it happens that K; will be a unique function of R/a. It can be seen
from the plots, however, that these functions are quite different for
the three cavity shapes. Although there is considerable interest in
establishing a single combination of dimensional parameters to cor-
relate (to some reasonable approximation) the equilibrium partition-
ing of any solute between a macroscopic solution phase and cavities
of any geometry whatever (10), we shall pursue here only the more
limited question of a comparison of the behavior of linear and
branched polymer chains with respect to the same pore model. Thus
the large absolute differences in K for a species in different types of
pores are not our present concern.

Exact random-flight calculations would in general be very difficult
for an arbitrary topology of chain branching. However, except for
requiring lengthier computations, one model proves to offer no more
real difficulty than do linear chains. This is what has been called the
“regular star” model—a number of identical linear chain elements
all joined by one end to a common branch point (21, 22). The pro-
cedure described above for a linear chain near a plane is carried out
for one of the branches: the origin of the chain is taken as the
branch point, which is placed at 2’, and P, is calculated as before for
a chain of n steps. Now, however, f chains of the same length are
generated in the same fashion from the same origin; and thus (P..)’
is the probability that a conformation of an f-fold star with the
branch point at z’ will not touch the boundary at z = 0. Finally,
the distribution coefficient is obtained:

K, =1-— a[)u — P,)| da’
1 — 2\J(nfb?/6a2)1/2 (13)*

in which A is a numerical factor dependent only on the cavity (1,2, 3,
for the slab, cylinder, and sphere, respectively) and ¢ is a function of f
that has been evaluated by numerical integration (y = 1/#'/* for
linear chains). A few values of ¢ are listed in Table 1. As the discus-
sion has already implied, Eq. (13) is a correct limiting form for a
polymer chain with average dimensions small compared to the cavity;
it gives the first two terms of an exact series in powers of (nfb*/6a?)'/?

* This relation was written incorrectly in Eq. (13) of Ref. 71, with an extra
factor f¥2 in the last term.
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TABLE 1

Effect of Chain Branching on Permeation Equilibrium for K; near Unity

f g ¥ ¥/g'? v
1,2 1.0000 0.5462 0.5642
3 0.7778 0.5415 0.6140 0.163
4 0.6250 0.5178 0.6634 0.182
6 0.4444 0.4775 0.7163 0.206
8 0.3838 0.4458 0.7603 0.220
12 0.2361 0.3997 0.8226 0.239

and hence, the correct initial slope of K as a function of this variable
for a given f. As in the case of linear chains, rather more complicated
calculations give K for chains that are not small compared to the
radius of the cavity (11).

CORRELATION OF RESULTS AND COMPARISON WITH EXPERIMENT

Equation (13) permits us to investigate the effect of chain branch-
ing on K;. Qualitatively, it is apparent (and expected) that increasing
f while keeping molecular weight fixed (keeping nf constant) increases
permeation—because with increasing branching the molecule be-
comes more compact. Increasing n with f fixed decreases permea-
tion since the molecular domain becomes larger; increasing f at
fixed n also decreases permeation because the greater the number of
branches, the greater is the chance that a eonformation randomly
generated from a given point inside a cavity will be interrupted by
the walls of the cavity. The more important quantitative question is
whether the dependence of K; on branching can be correlated with
any accessible measure of molecular size. The two most obvious
choices are inadequate. If the total mass (or number of statistical
segments) were the sole determinant, K; would depend on nf/a? and
¢ in Eq. (13) would be a constant; in fact, y decreases with increas-
ing f. The rms molecular radius R is no more satisfactory as a cor-
relating parameter. The effect of branching on mean molecular size
is conventionally expressed by

g = (Ror/Run)? (14)

the ratio of mean-square radii of a branched chain and the analogous
linear chain with the same mass. For random flight chains, R;i, is
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given by Eq. (12) and the proportionality factor g has been obtained
for a number of branched models, including the regular star (21). If K
depended uniquely on R,./a, the ratio ¢/g'/? according to Eq. (13)
would have to be constant; actually it increases, as Table 1 shows.

These unsuccessful analyses represent attempts to express K, first
as a function of (nfb2/a?)¢° and then of (nfb?/a?)g. That the deviations
with f are in opposite directions suggests applicability of an interme-
diate power of g. In the last column of Table 1, we give values of »
defined by

= g (15)

It is evident that when f is small, v is not far from 1/5 or 1/6. Accept-
ing the latter value, we can combine Egs. (13) and (15), and propose

K, =1 — 220 12(nfb?/6a?)1/2g!/6 (16)

as a general relation for K; for linear and branched chains provided
K; is not far from unity. Caleulations for star molecules in slab,
cylinder, and sphere cavities for K < 1 confirm in these more general
cases a dependence on R;i,g'/%/a, as Eq. (16) indicates. Plots of K;
versus (nfb%/6a?)/2g'/¢ at constant f superpose quite well, at least
for f < 8. A slightly larger power of g improves the superposition for
larger f (11). It is likely that these conclusions need not be restricted
to star molecules since the ratio g correlates physical properties for
a variety of branched chains.

Taking v as precisely 1/6 was arbitrary; but this value, in con-
junction with theoretical relations for the intrinsic viscosity, brings
our results into conformity with a recent empirical determinaton. If
the intrinsic viscosity for a linear chain species is given (23) by the
product of a universal hydrodynamic constant ® and the ratio R3/M
(M being the molecular weight) and if, according to an approximate
theory of Zimm and Kilb (24), the intrinsic viscosity for star mol-
ecules is related to that for linear chains of the same mass by

[nler = [nlung"/? (17)
it follows that
([n)erM /@)V3 = (nfb?/6)1/12g"/8 (18)

If the location of an elution peak in a chromatogram from a GPC
column is governed by the quantity on the right-hand side of Eg.
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(16), any polymer having the same value of the product [5]M
should elute at the same point from the same column. On empirical
grounds, Benoit et al. (25) have proposed just this relation.

Qur equilibrium calculations presuppose a theta-solvent system.
The extension to polymer in a good solvent—in which the chain
is expanded beyond random-flight size owing to potentials of mean
force Uo{q} that depend on conformation-—can be done to an ade-
quate approximation, at the price of loss of elegance; however, there
is some reason to believe that results for a random flight modified
simply by use of the mean-square size of the real chain will not be
seriously in error (26). Probably a more important shortcoming of
the theory is the total neglect of adsorption of polymer on the
column packing, It is very likely that this is a perturbing influence
in many situations of practical interest.

It is important to note that the ideas proposed here are susceptible
to experimental tests apart from verification of the predicted uni-
versality of [9]M as a column calibration parameter. In the unlikely
event that the real pore structure were sufficiently simply and pre-
cisely known, K for a polymer species of known molecular dimensions
could be calculated a priori and compared with the apparent value
deduced from elution measurements with the aid of Eq. (4). The col-
umn material coming closest to such idealized requirements is a spe-
cial porous glass developed by Haller (27, 28), which has been found
by electron microscopy and mercury intrusion measurements to
have pores of remarkably uniform cross section. Values of K de-
termined from elution studies (29) of a series of nearly monodisperse
linear polystyrenes from two columns of such glass with different
pore sizes agree well with the theoretical relation for K versus R/a
for the slab model (9). However, since the experimental estimates of a
(by mercury intrusion) (27) may be subject to systematic error,
the results can be taken as indicating no more than that the theory
gives results of the right order.

Finally, it is important to remember that the validity of interpret-
ing K in Eq. (4) as an equilibrium constant can be studied without
regard to a particular model. The value of K can be obtained directly
in a static experiment, by equilibrating an aliquot of polymer solu-
tion with the porous gel and determining the change in concentra-
tion in the supernatant liquid, provided that a calibration experi-
ment with a solute specics too large to penetrate the pores is also
done. The equilibrium data can then be compared with results from



14: 34 25 January 2011

Downl oaded At:

318 E. F. CASASSA

column elution. In a recent study of this kind, Yau, Malone, and
Fleming (30, 31) found agreement between static and chromato-
graphic experiments for elution of polystyrene solutions from porous
glass. With the more familiar cross-linked polystyrene gel as a
column packing, deviations from equilibrium behavior were found—
elution” volumes exhibiting a dependence on flow rate that became
more pronounced with increasing molecular weight.
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