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SEPARATION SCIENCE, 6(2), pp. 305-31 9, April, 1971 

Gel Permeation Chromatography and Thermodynamic Equilibrium* 

EDWARD F. CASASSA 
M E U N  INSTITUTE A S D  DEPARTMENT OF CHEMISTRY 

CARNEGIE-MELLON UNIWZSITY 

PITTSBURGH. PENNSYLVANIA 15213 

Summary 

Although gel permeation chromatography is firmly established as a tech- 
nique for investigating heterogeneity in synthetic polymers, the charac- 
ter of the chromatographic process-whether i t  is dominated by diffusion. 
by flow effects, or by an equilibrium partitioning of polymer between 
the mobile phase and the microporrs in the column packing-is still dis- 
puted. General chromatographic theory supports the idea that under 
ordinary experimental conditions the equilibrium distribution of a solute 
determines the position of its elution peak in the chromatogram. Sta- 
tistical mechanical calculations of distribution coefficients for linear and 
branched polymer chains and idealized pores of simple geometry lead 
to predictions in good accord with some experimental findings. 

GEL PERMEATION AND CHROMATOGRAPHIC THEORY 

I n  the decade or less since gel permeation chromatography (GPC) 
was first proposed as a general means for separation of synthetic 
polymers according to  molecular weight, suitable instrumentation has 
become widely available and the method has attained status as the 
most popular one for analytical polymer fractionation. Although the 
practical success, first with compact biological macromolecules and 
more recently with typical flexible chain polymers, that  has amply 
demonstrated that  separation is effected according to  molecular size 
has also spurred inquiry into the physical basis of the separation, the 

* Presented a t  the ACS Symposium on Gel Permeation Chromatography spon- 
sored by the Division of Petroleum Chemistry a t  the 159th National Meeting of 
the American Chemical Society, Houston, Texas, February, 1970. 
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306 E. F. CASASSA 

mechanism responsible remains a matter of some dispute. Theoretical 
treatments have been variously concerned with diffusion processes 
(1, 2 )  , hydrodynamic effects (2-5), and thermodynamic equilibrium 
(6-11). Perhaps the only point of general agreement is that the 
mechanisms proposed are not mutually exclusive: the question is 
not what effect occurs but rather which one is dominant ( 1 , 2 ,  4, 12). 

It is attractive to *uppose that a process at or (more precisely) near 
thermodynamic equilibrium is operative simply because a rigorous 
theoretical treatment will be inherently simpler than for a mechanism 
limited by a transport process. Furthermore, even if such optimism 
should be quite unjustified, it can be argued that  the equilibrium situa- 
tion retains significance as the asymptotic limit to which real behavior 
must tend when a chromatographic column is operated a t  extremely 
small flow rate. 

To  gain some idea of the applicability of an equilibrium model for 
GPC, we can turn to the general theory of chromatography. Of the 
several ways of treating chromatographic processes, the stochastic 
theory proposed by Giddings and Eyring (13) ,  elaborated upon by 
Qiddings (14) and by McQuarrie ( 1 5 ) ,  and applied to GPC by Car- 
michael (IS) is particularly appropriate. The original theoretical model 
is designed to describe adsorption chromatography. Hence, the descrip- 
tion proceeds in terms of a column filled with a granular packing 
material bearing identical surface sites (constituting a stationary 
phase) capable of adsorbing a solute reversibly from solution. The 
interstices between granules, initially filled with solvent, constitute 
the mobile phase. At a certain moment, a narrow band of solution is 
introduced a t  the top of the column. This is followed by more solvent 
as liquid is withdrawn from the bottom of the column a t  a steady rate 
and the solution zone passes down through the column, exchanging 
solute with the stationary phase. Three assumptions are made: ( a )  
that  a molecule of a particular solute species in the liquid phase has 
a certain fixed probability k, per unit time of being adsorbed on a 
surface site, (b)  that  a molecule on the surface has a fixed probability 
Ic, per unit time of escaping into the mobile phase, and (c) that there 
is no net diffusion of solute molecules in the direction of the column 
axis while they are in the mobile phase. The first assumption implies 
that  the adsorption isotherm is linear-thcl solution is 50 dilute that 
solute molecules do not interact and there is no multiple adsorption on 
sites. It further implies that  the absorption is not diffusion controlled. 
This requirement is obviously not physically realizable since the prob- 
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GPC AND THERMODYNAMIC EQUILIBRIUM 307 

ability for adsorption of a given molecule can hardly be independent 
of its distance from a reactive site, but a time-averaged k ,  will be the 
same for each solute molecule if the residence time in the column is 
long enough to permit the molecule to undergo a large rlumber of 
adsorptions and desorption steps. Assumptions ( a )  and (b)  require 
that absorption sites do not interact-that occupation of a site does 
not affect k ,  and k 2  at. any other site. Assumption (c)  means that  
every solute molecule spends the same time t o  in the mobile phase 
as it passes through the chromatographic column. The theory thus 
neglects various flow effects, as  well as longitudinal diffusion, that  in real 
columns contribute to  the spreading of chromatographic peaks. The 
peak shape predicted by the theory is accounted for solely by the 
probabi1it.y distribution of the total time t ,  that  a solute molecule 
spends absorbed as i t  pursues its course down the columii, alternately 
in the mobile phase and in the stationary (adsorbed) phase. The object 
of the stochastic theory is to calculate this distribution as  a function 
of parameters k,, k , ,  and t o .  If the rate of wit.hdrawa1 of fluid from 
the’ column is held constant, t o  + t ,  is proportional to  the volume 
eluted when molecules experiencing a given t,s emerge, and the prob- 
ability of t,s plot.ted against t ,  for a solute species has the shape of thc 
elution curve-i.e., concentration versus elution volume. 

It will be recognized that the foregoing description of a model for 
adsorption chromatography requires only minimal verbal changes to 
apply equally to GPC. Now we have a column packing that  con- 
tains, in place of adsorption sites, microscopic voids, for our purposes 
of the sarne order of size as macromolecules and (for simplicity) as- 
sumed to be of identical size arid shape. The stationary phase is the 
volume V i  of the part  of tlie column inside micropores and accessible 
to  solvent. All we then have to  do is replace the word “adsorption” 
by the phrase “entrapment, in micropores” and recognize that in GPC, 
unlike adsorption chromatography, the solvent-consisting of small 
molecules and, therefore, most easily trapped in voids-is retarded in 
the column relative to  macromolecular solutes.” 

The mathematical problem is a standard one in probability theory. 
Interestingly, the result of the calculation is an elution curve that  
departs somewhat from a Gaussian--it has a positive skew. However, 

* Since the name “gel permeation” has been canonized by general acceptance. 
we use it freely here to designate a kind of c~hromatography, without  meaning to 
imply that thc column packing must be B gel in any conventional senw of 
the word. 
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308 E. F. CASASSA 

our concern here is not with the details of the theoretical curve shape 
but primarily with the position of the maximum in the peak along 
the time (or volume) axis. The result we require is (13) 

V ,  = V O  + K V , ( l  - 3 / 2 w )  (1) 
where V ,  is the volume eluted when the peak maximum appears (hence- 
forth called simply the elution volume) and V o  is the volume of the 
mobile phase. Then, T’, + Vi is the total volume of the column except 
for the volume of the solid matter in the packing and the volume of 
“blind” pores that cannot be permeated by solvent. Certain constants 
are gathered in K ,  

and 
K = klVo/k,V, (2) 

IT = k& (3) 
is the mean number of entrapments suffered by a solute molecule in 
its passage through the column. Equation (1) is an asymptotic relation 
for N .  Recalling that the mean residence time of a molecule in a GPC 
column is of the order of a half hour or longer in a conventional experi- 
ment, we surmise that this condition is adequately fulfilled. Equation 
(1) also implies that  a t  the start of the experiment-the moment when 
withdrawal of liquid from the column begins-the solute is all in 
the mobile phase. However, the only difference for the alternative 
extreme of all solute adsorbed a t  the beginning is the unimportant 
replacement of 3/2 in the second term by 1/2 ( I S ) .  

The obvious, but crucial, deduction from Eq. (1) is that  if IT is 
sufficiently large, we can write 

ve = vo + K V ,  (4) 

without appreciable error. Consequently, under realistic experimental 
conditions, the elution volume V ,  from a given column is expected to 
be insensitive to the flow rate, which of course determines the time to, 
hence N .  

As we expect intuitively, the dispersion of an elution peak does not 
share this insensitivity to flow rate. Another result of the statistical 
theory is that  the standard deviation of t ,  is proportional to (i.e., 
to to%) for large B. However, the standard deviation of the ratio 
t,/t, is asymptotically proportional to I/$%. These relations conform 
to the essential requirement in a chromatographic separation that in- 
creasing the column length a t  constant flow rate improves resolution 
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GPC AND THERMODYNAMIC EQUILIBRIUM 309 

of multiple peaks, even though each peak becomes broader with 
increasing to. 

Equation (4) can be regarded as the basic relation for GPC. The 
constant K as defined in the theory is the ratio of the two rate con- 
stants for passage of solute to and out of the stationary phase; hence 
i t  is the equilibrium constant, the distribution coefficient, for the 
partitioning of solute between mobile and stationary phases. Just  
as in the distribution of a solute between dilute macroscopic phases, K 
is the ratio of solute concentrations in  the two phases; and -RT In K 
represents the free energy change for the process of transporting a 
mole of solute in its standard state in one phase to its standard state in 
the other. The possibility is thus afforded of applying the conventional 
methods of statistical mechanics to simple models for entrapment 
of solute in pores to deduce K and thus to predict elution volumes 
from Eq. (4) i f  V o  and Vi  are known. In  general V o  and Vi  can be de- 
termined experimentally: the former represents the elution volume 
for solute molecules so large that  they do not penetrate the pores ap- 
preciably ( K  = 01, and Vi + V ,  is the elution volume for small 
molecules that penetrate the voids as easily as the solvent does (so 
that K = 1-as would be expected for radioactively labeled solvent). 

As the preceding discussion indicates, equilibrium theory may yield 
important information about gel chromatography-information on the 
relation of molecular conformation and pore geometry to the elution 
volume. However, it  cannot be expected to reveal anything about peak 
spreading since the dynamics of molecular entrapment that determine 
the individual rate constants k ,  and k ,  do not enter into the equilibrium 
calculations. 

CALCULATION OF THE SOLUTE DISTRIBUTION 

We h a w  already stipulated that the solution passing through the 
chromatographic column must be so dilute that  interactions between 
solute molecules are negligible. Then, the equilibrium constant K can 
be written formally as a ratio of configuration integrals for one 
molecule: 

where U , { q }  represents an energy associated with a set of spatial 
coordinates { a }  that  defines a solute molecular conformation in the 
stationary phase and U , { q }  represents the energy as a function of the 
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31 0 E. F. CASASSA 

requisite coordinates in the mobile phase.“ For a spherical molecule 
appropriate coordinates would be the three needed to locate the center 
of mass; for a rigid asymmetric molecule, the coordinates of the center 
of mass plus the angles determining orientation; and for a flexible 
polymer chain, coordinates of the eenter of mass, or a chain end, plus 
coordinates of each segment relative to this reference point. The symbol 
d { q }  denotes a differential element of the configuration space of as 
many dimensions as are needed to  describe a molecular conformation. 
The  two multiple integrations are carried out over equal macroscopic 
volumes in physical space, e.g., a unit volume of solution and the 
same volume of space inside pores constituting the stationary phase 
(10). 

Evaluation of the integrals in Eq. (5) is in general impossible, 
and further progress depends on placing drastic limitations on the 
energies U , { q } .  Here we let these energies have but two values, zero 
(or any  fixed finite value) and infinity. When U ,  is zero, the con- 
formation is  allowed; when U ,  is infinite, the conformation is for- 
bidden. Thus we represent the walls of a pore as rigid boundaries 
which a molecule cannot. pass. Any Conformation intersecting the 
boundary has infinite energy and is thereby excluded. Adsorption of 
solute, which would imply minimum energy for conformations con- 
tiguous to the boundary surface, is also excluded. For nonrigid 
molecules the assumption tha t  all allowed conformations have the 
same energy means that intramolecular interactions are ignored. For 
flexible long-chain molecules, the case of particular interest, this 
means that  the polymer-solvent system is at its characteristic “theta 
temperature,” a t  which the second virial coefficient in the osmotic 
equation of state is zero (and at which phase separation occurs if  
the polymer is of infinite molecular weight) (18). At the theta point, 
the molecular conformation of a long-chain polymer can be descrihed 
by random flight statistics, a fact that  enormously facilitates mathe- 
matical analysis. 

With the above limitations on permissible energies, the distribu- 
tion coefficient K is expressed as a ratio of volumes in configuration 
space; and thus R l n K  is a standard entropy change per mole of 
solute. For rigid spherical molecules, the ratio of configuration in- 
tegrals reduces to a ratio of volumes in physical space. This straight- 

*In more precise language, these energies are potentids of mean force ( 1 7 )  
between solute molecules. They include implicitly the effects of solute-solvent 
and solventaolvent interactions. 
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forward volume-exclusion picture of GPC has long been used to 
account for the elution behavior of compact biological macromolecules. 
For example, a spherical solute molecule of radius T does not interact 
with a wall when its center of mass is farther than a distance T 

from the wall, and it can approach no closer than r. Consequently, 
in a slab-shaped space between parallel (infinite) planes a distance 
2a apart, the equilibrium constant is ( a  - r ) / a ,  the volume “seen” 
by the sphere divided by the actual volume of a cavity. The same 
sphere in a long cylindrical cavity of radius a and inside a hollow 
sphere of radius a gives I< equal, respectivcly, to the square and cube 
of ( a  - T ) / u .  Various geometrical situations for exclusion of rigid 
molecules have been investigated (6-8, 10, 19). The calculations are 
sometimes intricate but the principle remains the same; the cal- 
culated k’ represents the fraction of the void volume effectively 
available to solute. 

The exclusion of a flexible polymer chain from part of the volume 
inside micropores is perhaps less obvious. Because such a molecule is 
allowed to assume any shape, however tortuous, no part  of the 
actual volume of a pore is excluded from occupancy by any part 
of the polymer chain; but since configurations tha t  intersect the 
walls of a void are disallowed, the number of permitted configura- 
tions per unit. volume is still decreased by proximity to a wall. In  
other words, although the geometry of the situation is more com- 
plicated than for the rigid sphere model, it  is still true that the 
region of configuration space available to the solute is reduced by the 
presence of an impenetrable boundary. 

These ideas can be illustrated concretely by considering the least 
specific model for a micropore: whatever the shape of the pore, we 
let it be characterized simply by the ratio U of its surface to its 
volume and assume that solute molecules, intersect with the sur- 
face as if i t  were a plane of infinite extent. Therefore, a spherical 
solute of moleciilar radius r ,  rolling over the surface of any cavity, 
will have its center of mass excluded from a fraction UT of the 
volume of the cavity, and then according to Eq. (51, the distribution 
coefficient is given by 

K = l - a r  (6)  

Representing U by l/a, 2/a,  and 3/n,  for slab-shaped, cylindrical, and 
spherical cavities, respectively, we obtain expressions for K in agree- 
ment with the exact results mentioned above for the limit r / a  + 0. 
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31 2 E. F. CASASSA 

Turning to a linear polymer chain, we depict it by a trace of the 
path of a particle undergoing a series of random displacements; thus 
we seek an appropriate solution of the diffusion equation 

where Pn(x,y ,z)  dxdydz is the probability of finding the nth step of 
the random walk within a differential volume element dxdydz located 
a t  a point x,y,z. The step length is normally distributed and its rms 
value is b. For the problem under discussion we suppose that the 
random flight begins a t  a point (x’,O,O) within a semi-infinite region 
x > 0 bounded by a plane at x = 0. Imposing the boundary condi- 
tion that P,  vanish a t  x = 0, we can solve the differential equation 
to obtain: 

Pn(~,y,zIx’,O,O) = (6,/7rnb2) exp { - (3/2nb2)(y2 + 9) 1 
X [exp I-(3/2nb2)(x - x ’ ) ~ )  - exp {-(3/2nb2)(x + z ’ ) ~ ] ]  (8 )  

the probability that a random flight starting a t  (x’,O,O) arrives at  
the point (x,y,z)  after n steps without encountering the boundary (20). 
Integration gives an error function, 

P,’ = JJJPn(~,y,z\x’,O,O) dxdydz = erf [(x’/2) (6/nb2) 112] (9) 
where 

erf U = (2/7r19 e-Lz dt 

for the probability that a random flight beginning at a distance x‘ 
from the plane x = 0 and proceeding for n steps does not touch the 
boundary. Equivalently, P,., can be described as the fraction of all 
possible conformations of a random-flight polymer chain of n scg- 
ments with one end a t  x = x‘ in unbounded space that still remains 
available when an impenetrable boundary is placed a t  x = 0. The 
integral 

xe = 1” (1  - Pz,) dx’ = 2 ( n b 2 / ~ ) ’ / 2  (11) 

represents an effective distance characterizing the depletion of pol- 
ymer chains a t  equilibrium near the boundary. That is, in terms of 
the mean solute concentration (precisely, the concentration of chain 
ends), the cavity is equivalent to a volume in an unbounded space 
that is smaller than the real cavity by a layer of thickness xc adjacent 
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to the wall. The distribution coefficient K K ,  for the polymer species 
is then simply obtained by putting zc in place of r in Eq. ( 6 ) .  

Just  as in the case of rigid spheres, expressions for K ,  for flexible 
chain molecules derived in this way are correct limiting forms for 
molecules small compared to the dimensions of the cavity. Calcula- 
tions not so restricted, of K ,  for random-flight chains in the slab, 
cylinder, and sphere cavities h a w  been described elsewhere ( 9 ) .  The 
results are shown in Fig. 1 for comparison with the limiting behavior. 
It can be seen that the straight line representing the approximate K ,  
for the slab crosses the curve for the exact relation a t  K 0.25. There 
are similar intersections a t  much larger K for the cylinder and sphere 
relations, although this is not discernible on the scale of Fig. 1. 

Since the mean-square radius of a random-flight linear chain of 
n segments is 

RZ = nb2/6 (12) 

the quantity, (nbz/6n2)''*, where n is the radius of the cavity (half 
the separation of the planes in the slab model), is a convenient meas- 

9 

FIG. 1. Equilibrium constants for partitioning of linear random-flight 
polymer chains between a macroscopic solution phase and cavities of mo- 
lecular dimensions. The solid curves, (from top to bottom) are for slab- 
shaped, cylindrical, and spherical cavities. The abscissa is the ratio of 
the rms molecular radius to the cavity radius (half its thickness for the 
slab). The dashed lines are the corresponding limiting relations for the 

upper permeation limit, K = 1. 
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314 E. F. CASASSA 

ure of the relative sizes of a polymer molecule and the cavity. For 
each pore geometry characterized by a single dimensional parameter 
a, i t  happens that  K ,  will be a unique function of R/a. It can be seen 
from the plots, however, that  these functions are quite different for 
the three cavity shapes. Although there is considerable interest in 
establishing a single combination of dimensional parameters to cor- 
relate (to some reasonable approximation) the equilibrium partition- 
ing of any solute between a macroscopic solution phase and cavities 
of any geometry whatever (IO), we shall pursue here only the more 
limited question of a comparison of the behavior of linear and 
branched polymer chains with respect to the same pore model. Thus 
the large absolute differences in K for a species in different types of 
pores are not our present concern. 

Exact random-flight calculations would in general be very difficult 
for an arbitrary topology of chain branching. However, except for 
requiring lengthier computations, one model proves to offer no more 
real difficulty than do linear chains. This is what has been called the 
“regular star” model-a number of identical linear chain elements 
all joined by one end to a common branch point (21, 22) .  The pro- 
cedure described above for a linear chain near a plane is carried out 
for one of the branches: the origin of the chain is taken as the 
branch point, which is placed at x’, and P, is calculated as before for 
a chain of n steps. Now, however, f chains of the same length are 
generated in the same fashion from the same origin; and thus (Pz,)f 
is the probability that  a conformation of an f-fold star with the 
branch point a t  x‘ will not touch the boundary at x = 0. Finally, 
the distribution coefficient is obtained: 

Kf = 1 - U [l - P,’)f] dx’ 

= 1 - 2 X J . ( ~ ~ f b ~ / 6 a * ) ” ~  (13)* 
in which h is a numerical factor dependent only on the cavity (1 ,2 ,3 ,  
for the slab, cylinder, and sphere, respectively) and I) is a function of f 
that has been evaluated by numerical integration (+ = l/+” for 
linear chains). A few values of $ are listed in Table 1 .  As the discus- 
sion has already implied, Eq. (13) is a correct limiting form for a 
polymer chain with average dimensions small compared to the cavity ; 
i t  gives the first two terms of an exact series in powers of (nfb2/6u2)’/‘  

factor in the last term. 
*This relation was written incorrectly in Eq. (13) of Ref. 11, with an extra 
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TABLE 1 

Effect of Chain nrarichiiig on Permeation Equilibrium for k', near Unity 

f 9 + +/g", Y 
~ _ _ _  

1, 2 1 . 0000 0.5462 0.5642 
3 0.7778 0.5415 0.6140 0.163 
4 0.6250 0.5178 0.6634 0.182 
6 0.4444 0.4775 0.7163 0.206 
8 0.3838 0.4458 0.7603 0.220 

12 0.2361 0.3997 0.8226 0.239 

and hence, the correct initial slope of K as a function of this variable 
for a given f. As in the case of linear chains, rather more complicated 
calculations give K for chains that are not small compared to the 
radius of the cavity (11). 

CORRELATION OF RESULTS AND COMPARISON WITH EXPERIMENT 

Equation (13) permits us to investigate the effect of chain branch- 
ing on K,. Qualitatively, it is apparent (and expected) that  increasing 
f while keeping molecular weight fixed (keeping nf constant) increases 
permeation-because with increasing branching the molecule be- 
comes more compact. Increasing n with f fixed decreases permea- 
tion since the molecular domain becomes larger; increasing f a t  
fixed n also decreases permcation because the greater the number of 
branches, the greater is the chance that  a conformation randomly 
generated from a given point inside a cavity will be interrupted by 
the walls of the cavity. The more important quantitative question is 
whether the dependence of K f  on branching can be correlated with 
any accessible measure of molecular size. The two most obvious 
choices are inadequate. If the total mass (or number of statistical 
segments) were the sole determinant, I(f would depend on nf/a2 and 
+ in Eq. (13) would be a constant; in fact, 3 decreases with increas- 
ing f .  The rms molecular radius R is no more satisfactory as a cor- 
relating parameter. The effect of branching on mean molecular size 
is conventionally expressed by 

t.hc ratio of mean-square radii of a branched chain and t.he analogous 
linear chain with the same mass. For random flight chains, Rlin is 
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given by Eq. (12) and the proportionality factor g has been obtained 
for a number of branched models, including the regular star (21).  If K 
depended uniquely on RBJa, the ratio $/g1/2, according to Eq. (13) 
would have to be constant; actually it increases, as Table 1 shows. 

These unsuccessful analyses represent attempts to express KI first 
as a function of (nfh2/az) go and then of (nfbz/uz) g. That the deviations 
with f are in opposite directions suggests applicability of an interme- 
diate power of g. In  the last column of Table 1,  we give values of v 

defined by 

4 2  = g 2 v  (15) 

It is evident that  when f is small, v is not far from 1/5 or 1/6. Accept- 
ing the latter value, we can combine Eqs. (13) and (15), and propose 

K j  = 1 - 2X,-1/2(nfb2/6a2)1’2g1’6 (16) 
as a general relation for K f  for linear and branched chains provided 
Kf is not far from unity. Calculations for star molecules in slab, 
cylinder, and sphere cavities for K < 1 confirm in these more general 
cases a dependence on Rling1I6/u, as Eq. (16) indicates. Plots of K ,  
versus (nfb2J6u2) 1/*g1/6 a t  constant f superpose quite well, a t  least 
for f 5 8. A slightly larger power of g improves the superposition for 
larger f (11). It is likely that these conclusions need not be restricted 
to star molecules since the ratio g correlates physical properties for 
a variety of branched chains. 

Taking v as precisely 1/6 was arbitrary; but this value, in con- 
junction with theoretical relations for the intrinsic viscosity, brings 
our results into conformity with a recent empirical determinaton. If 
the intrinsic viscosity for a linear chain species is given ( 2 3  by the 
product of a universal hydrodynamic constant and the ratio R 3 / M  
( M  being the molecular weight) and if, according to an approximate 
theory of Zimm and Kilb (24),  the intrinsic viscosity for star mol- 
ecules is related to that for linear chains of the same mass by 

[Vlbr = [llling1’2 (17) 

it follows that 

([q]brM/@)1/3 = (nfb2/6) 1’2g1/6 (18) 

If the location of an elution peak in a chromatogram from a GPC 
column is governed by the quantity on the right-hand side of Eq. 
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(16),  any polymer having the same value of the product [ V I M  
should elute a t  the same point frorn the same column. On empirical 
grounds, Benoit et al. (25) have proposed just this relation. 

Our equilibrium calculations presuppose a theta-solvent system. 
The extension to polymer in a good solvent-in which the chain 
is expanded beyond random-flight size owing to  potentials of mean 
force U o { q }  that depend on conformation-can be done to an ade- 
quate approximation, at the price of loss of elegance; however, there 
is some reason to believe that results for a random flight modified 
simply by use of the mean-square size of the real chain will not be 
seriously in error (26 ) .  Probably a more important shortcoming of 
the theory is the total neglect of adsorption of polymer on the 
column packing. It is very likely that this is a perturbing influence 
in many situations of practical interest. 

It is important to note that the ideas proposed here are susceptible 
to experimental tests apart from verification of the predicted uni- 
versality of [ V I M  as a column calibration parameter. In  the unlikely 
event that the real pore structure were sufficiently simply and pre- 
cisely known, K for a polymer species of known molecular dimensions 
could be calculated a priori and compared with the apparent value 
deduced from elution measurements with the aid of Eq. (4). The col- 
umn material coming closest to such idealized requirements is a spe- 
cial porous glass developed by Haller (27, 28),  which has been found 
by electron microscopy and mercury intrusion measurements to 
have pores of remarkably uniform cross section. Values of K de- 
termined from elution studies (29) of a series of nearly monodisperse 
linear polystyrenes from two columns of such glass with different 
pore sizes agree well with the theoretical relation for K versus R/a 
for the slab model (9). However, since the experimental estimates of a 
(by mercury intrusion) (27) may be subject to systematic error, 
the results can be taken as indicating no more than that the theory 
gives results of the right order. 

Finally, it is important to remember that the validity of interpret- 
ing K in Eq. (4) as an equilibrium constant can be studied without 
regard to a particular model. The value of K can be obtained directly 
in a static experiment, by equilibrating an aliquot of polymer solu- 
tion with the porous gel and determining the change in concentra- 
tion in the supernatant liquid, provided that a calibration experi- 
ment with a solute species too large to penetrate the pores is also 
done. The equilibrium data can then be compared with results from 
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column elution. In  a recent study of this kind, Yau, Malone, and 
Fleming (SO, 31) found agreement between static and chromato- 
graphic experiments for elution of polystyrene solutions from porous 
glass. With the more familiar cross-linked polystyrene gel as a 
column packing, deviations from equilibrium behavior were found- 
elution volumes exhibiting a dependence on flow rate that  became 
more pronounced with increasing molecular weight. 
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